欧美日韩精品人妻狠狠躁免费视频|久久久久琪琪去精品色一到本|人妻一本久道久久综合久久鬼色|最新亚洲人成网站在线影院

Skip to content Skip to navigation

Machine designers needing a high-precision linear guide usually have little choice except higher-cost profile rail, but within this component’s realm, diligent analysis can keep those costs to a minimum. Too often, however, in the press of project deadlines, designers may not have the time to conduct the necessary analysis to map rail functionalities to their application needs and end up paying a premium for impractical features. Plus, the larger the production run, the greater the potential problems.

What drives profile rail costs?

The primary cost factors in profile rail selection are essentially prescribed by the motion profile, but there are other areas where the design has more leeway to manage trade-offs. The selection of ball track assemblies can make a huge difference in the cost. Other factors, including material selection, maintenance, standards compliance, and training offer additional opportunities for cost reduction, albeit with varying degrees of influence on upfront versus long-term expenses.

Cost-optimizing ball track position

How the machine designer wants to position load-carrying and contacting elements in relation to each other significantly impacts cost. The three most common options are a double-faced arrangement with spherical balls, a double-backed arrangement with spherical balls and a double-backed arrangement with rollers.

Double-faced ball tracks

A double-faced ball-track arrangement is the least expensive. It arranges ball tracks with contact angles at 45 degrees, causing an X pattern. (Figure 1) The X-type configuration optimizes the distribution of load across all the rolling elements, enabling convergence of force vectors close to the center of rotation. Centralizing the force vectors in this way makes the double-faced arrangement much more tolerant of misalignment and mounting surface imperfection, significantly reducing installation and mounting costs.

Greater tolerance for imperfection may also allow simpler mounting, manual alignment of single rails, and use of standard components- further reducing costs. Lower-precision options may, however, contribute to higher maintenance costs and less durability in the future.

As such, the X-type arrangement is ideal for automation applications requiring less accuracy on assembly height and width tolerances, between +/-40μm and +/-100μm, such as packaging equipment, food processing equipment and medical sample handling.

Figure 1. The X-type arrangement features double-faced ball tracks with contact angles at 45 degrees. This configuration optimizes the distribution of load across all the rolling elements.

Double-backed profile rails

All else being equal, double-backed profile rails have a higher resistance to moment loads. This is because the O-type arrangement of vectors resisting the moment load is further from the center of rotation (Figure 2), giving them extremely high rigidity and accuracy. The O-type arrangement, however, cannot tolerate misalignment or surface imperfection. Inadequate surface preparation will make the guide run rough and subject it to more frequent replacement. Even tiny flatness errors can cut reduced bearing life in half, and more severe alignment issues can result in immediate failure. These potential flaws result in a higher cost of installation, which can be several times the cost of a double-faced bearing track architecture. Typical mounting surface requirements require 15-20 times more precision than the double-faced counterparts.

Getting the necessary precision may require specialized equipment, staffing, customization, or other elaborate procedures, adding to both time and financial investment. Potential applications are those that require greater accuracy on assembly height and width tolerances, between +/-5μm and +/-50μm, such as in industrial automation, machine tool equipment, precision measuring equipment and industrial robots.

Figure 2. The O-type arrangement features double-backed profile rail further from the center of rotation for a higher resistance to moment loads. This configuration, however, cannot tolerate misalignment or surface imperfection.

Profile rail with rollers

When applications require maximum rigidity, designers may opt for rollers over balls. Rollers provide enhanced stability and load capacity with minimal rolling friction, thanks to their larger contact surface. However, profile rail with rollers also come at a higher cost and intolerance for installation variances, making them most cost effective only for the most demanding applications in terms of accuracy and moment load capacity. These include industrial automation, machine tool equipment, precision measuring and industrial robots requiring the greatest possible accuracy on assembly height and width tolerances, between +/-5μm and +/-20μm,

Managing other design trade-offs

While the selection of rail track architectures has the greatest impact on costs, other choices affecting project budgets that are within the designer’s control include material selection, maintenance, standards compliance, and training.

Material selection

Material selection can be critical in cost management, influencing both the initial and operational costs of profile rail. Aluminum offers the lowest cost but is best for lower accuracy ranges. Hardened steel strikes a better balance among cost, durability, and performance for a broader range of uses. Environments requiring high corrosion resistance or unique properties should consider stainless steel or advanced coatings, which come with a higher cost.

Maintenance

Maintenance-related decisions that can impact cost include load capacity versus size, where high load capability rails can handle heavier loads but may be larger and require more expensive and frequent maintenance. Likewise, higher accuracy demands, especially in profile rail with balls and rollers needing high speed and precision, will also involve higher maintenance costs.

Maintenance-related functions that impact cost from the designer’s perspective include the addition of features like wipers, scrapers, oil reservoirs, lube blocks, coatings, sealing and pre-loading. Whether OEMs build such functionality into their products depends on their assessment of the market demand for it.

Strategic standards compliance

Depending on location, leveraging standards strategically can help reduce costs. There are, for example, established standards for linear motion features such as rolling guides, rails and ball screws. Someone revising or rebuilding a machine in a region subject to standards that require a higher tolerance, for example, may be able to reduce cost significantly by building in a location governed by more forgiving standards, especially if the standards call for higher tolerances than the application needs.

Training

Plant managers and supervisors can also play a role in cost containment by optimizing human resources. The success of every factor discussed thus far depends on the experience and talent of the individual that is implementing it. For example, inadequate surface preparation can reduce the value of anything running on it to zero. It is up to the personnel officials to determine whether to obtain those services in-house, train teams that do not have them or bring in outside specialists. This is even more complex and critical in this age of talent shortages, where individuals may have to be trained in multiple tasks.

Conclusion

In navigating the complex decision-making process for profile rail selection, starting with a cost-effective, double-faced architecture can provide a practical baseline. From there, designers can incrementally explore more advanced options based on the specific needs of their application. By considering the broader spectrum of design trade-offs, including material choices, maintenance functionality, regulatory standards and training, designers can optimize their selections to balance upfront costs with total operational expenses.

To further assist design engineers in making the right choices, device vendors such as Thomson Industries provide design resources, including a team of application engineers who assist in identifying the optimal solution, online product selector tools, technical collateral, white papers, webinars, and video instruction.

back to top 主站蜘蛛池模板: 狠狠五月深爱婷婷| 天天躁日日躁狠狠躁人妻| 国产成人精品免费视频大全五级| 亚洲 欧美 另类 制服 日韩| 亚洲综合天堂一区二区三区| 久久理论片午夜琪琪电影网| 四虎成人精品永久在线视频| 亚洲视频一区| 国产精品久久..4399| 推油少妇久久99久久99久久| 丰满岳跪趴高撅肥臀尤物在线观看 | 久久97久久97精品免视看秋霞| 中文字字幕乱码视频高清| 亚洲国产精品无码av| 国产制服丝袜亚洲日本在线| 国内精品免费视频自在线拍 | 久久免费午夜福利院| 孕妇怀孕高潮潮喷视频孕妇| 国产精品视频色拍在线视频| 亚洲自偷自偷偷色无码中文| 国产免费观看久久黄av片| 亚洲狠狠婷婷综合久久| 秋霞在线观看秋| 日本午夜免费福利视频| 国产精品任我爽爆在线播放| 欧美精品毛片久久久久久久| 欧美人与动xxxxz0oz视频| 老司机精品无码免费视频| 亚洲大成色www永久网站| 亚洲高清国产av拍精品青青草原| 亚洲国产精品无码久久久蜜芽| 国产精品亚洲欧美中字| 久久久久久久人妻无码中文字幕爆| 国产亚洲精品久久久久婷婷瑜伽| 亚洲色成人网站www永久四虎| 国产内射合集颜射| 囯产精品久久久久久久久久妞妞| 成人精品综合免费视频| 亚洲中文字幕经典三级| 99国产成人精品视频| 99热成人精品热久久|